Edition number: 36 Year: 2023.

Title: PYROLYSIS OF SOYBEAN WASTE: A ROUTE TO BIOCARBON FOR PESTICIDES CAPTURE

Abstract:
Background: This study explores the potential use of biomass residues from soybean pressing via static pyrolysis to produce carbonaceous materials for pesticide adsorption. It emphasizes concerns regarding the environmental impact of agroindustrial waste and the persistent nature of pesticides in soil and water systems. Aims: To investigate the efficacy of biochar obtained from soybean waste in adsorbing pesticides. Specifically, to analyze the gas products generated during pyrolysis and characterize the obtained carbonaceous material for its adsorption capabilities. Methods: Soybean residue underwent static pyrolysis at various temperatures and durations. Gas analysis utilizing FTIR spectroscopy identified the gaseous products generated during the pyrolysis process. The obtained biochar underwent successive washes and characterization through FTIR spectra comparison with commercial activated carbon. Through absorption assays, using UV-VIS spectroscopy, investigations were conducted on the solid biocarbon fractions to evaluate their capacity for absorbing pesticides. Results: Gas Analysis: The study revealed the production of volatile organic compounds (VOCs) and highlighted the prevalence of mono-carbon compounds with increased temperature and pyrolysis time. The analysis demonstrated consistent carbon mass percentages across different reaction conditions. Characterization of Biochar: Comparison with activated carbon indicated structural similarities with heightened intensity in certain bands, suggesting the presence of incomplete cellulose cracking in the obtained biochar. Regarding the Chlorothalonil, Atrazine and DIcamba remotion, notably, the concentration of Chlorothalonil in a 7:3 water: acetonitrile solution decreases by 77 % through adsorption on the carbons. Discussion: The investigation examined the adsorption efficiency of the biochar for Chlorothalonil, Atrazine, and Dicamba from aqueous solutions. Chlorothalonil exhibited substantial retention by the biochar, while Atrazine showed comparatively lower adsorption effectiveness. Remarkably, Dicamba did not demonstrate retention by either the biochar or activated carbon. Conclusion: The study underscores the potential of pyrolyzed soybean waste for pesticide adsorption, particularly highlighting Chlorothalonil's strong affinity with the carbonaceous structure. Further research is needed to optimize adsorption properties and explores potential enhancements of these materials through additional treatment methods, offering promising avenues for environmental remediation.

Link: Open
DOI: 10.48141/SBJCHEM.v31.n36.2023_CEBALLOS_pgs_01_08.pdf