COMPARISON OF THE EFFECT OF SILICON AND SILICON NANO-CHELATE IN REDUCING THE IMPACT OF SALINITY STRESS ON WHEAT SEEDLINGS
Today, salinity stress causes extensive damage to crops, and high soil salinity is one of the limiting factors for crop yields. A practical approach to lessen the negative effect of salinity stress is to use mineral nutrition methods such as spraying plants with silicone. To investigate and compare the effect of silicon and silicon nano-chelate on the wheat plant resistance (Shiroodi cultivar) to salinity stress, a factorial experiment was designed and conducted in a completely randomized design with five replications under hydroponic conditions. Experimental treatments included concentrations of 0 and 2 mmol/L silicon, 0 and 0.424 g/L silicon nano-chelate, 0 and 150 mmol/L sodium chloride, and their interaction. The growth and physiological indices showed that salinity stress decreasing effect on shoot dry weight, root fresh weight, catalase activity, and ascorbate peroxidase. These increases indicate the activation of the plant defense system against salinity stress conditions. The results also showed that silicon nano-chelate treatment under salinity stress reduced dry and fresh weights of roots and shoots. These two compounds additionally influenced the content of catalase activity, ascorbate peroxidase, and superoxide dismutase content in shoots. Simultaneously, the silicon and silicon nano-chelate treatment under salinity stress reduced the dry and fresh weight of roots and shoots, catalase activity, and ascorbate peroxidase. Therefore, the results obtained in this study generally showed that silicon under salinity stress increased plant growth and positively affected the activity of its antioxidant system. But silicon nano-chelate not only did not improve plant performance but also reduced its growth.
Read ArticleADSORPTION STUDIES OF ZINC, COPPER, AND LEAD IONS FROM PHARMACEUTICAL WASTEWATER ONTO SILVER-MODIFIED CLAY ADSORBENT
Background: Industrial wastewater contains pollutants that are detrimental to human health in varied proportions. Among the pollutants are heavy metals, including Zn2+, Pb2+, and Cu2+ found in a characterized pharmaceutical wastewater. Several techniques have been proposed for the heavy metal sequester. However, they are with attendant challenges. The adsorption techniques using clay-metal oxide modified adsorbent/composite such as silver-clay adsorbent is considered suitable for an effective sequestering process. Aims: To develop and characterize Ag/clay adsorbent for pharmaceutical wastewater treatment. Methods: The Ag nanoparticles were synthesized using Parkia biglobossa aqueous leaves extract in an optimization study. The raw clay was beneficiated and doped with silver nanoparticles via the wet impregnation method. The silver-clay adsorbent was characterized using FTIR, XRD, SEM, and EDS characterization tools. The developed adsorbent was used for the batch adsorption process of the heavy metal ion removal from the wastewater. Results and Discussion: The phytochemical analysis and FTIR results of the P. biglobosa showed that the leaf contains phenol, tannin, and flavonoids which acts as reducing, capping, and stabilizing agent required for synthesizing the silver nanoparticles. The prepared silver nanoparticles modified clay adsorbent Ag/clay, have evenly distributed stacks of pseudo-hexagonal plates, are rich in silica, possess silver nanoparticles in the frameworks, and contain functional groups suitable for binding heavy metals. The adsorptions of Zn2+, Pb2+, and Cu2+ from pharmaceutical wastewater onto the silver-modified clay were studied as a function of adsorbent dosage and contact time. The percentage removal results obtained showed that the adsorbent had up to 99.96%, 99.5%, and 99.44% removal efficiency for Zn2+, Pb2+, and Cu2+, respectively, which are better compared with previous studies. The adsorption process was feasible, spontaneous, and exothermic, with Langmuir and Pseudo-second-order models as best fits for the process. Conclusions: The adsorption of selected heavy metal ions onto the green synthesized silver-modified clay adsorbent (Ag/clay) was feasible, spontaneous, and exothermic in the order Zn2+>Pb2+>Cu2+ with Langmuir and Pseudo-second-order model best fitted for the process. These show that the synthesized silver oxide nanoparticles supported on local clay can be used as a potentially low-cost adsorbent to remove heavy metal ions from industrial wastewater.
Read ArticleEVALUATION OF TNF-Α CONCENTRATION LEVEL IN PATIENTS INFECTED WITH HYDATID CYSTS IN AL-NAJAF HOSPITALS
Background: Human echinococcosis is a zoonotic disease caused by Echinococcus granulosus, the etiological agent of cystic echinococcosis (CE). Aim: This study aims to determine the epidemiological prevalence of Echinococcus granulosus in patients with hydatid cysts and evaluate serum TNF-α levels associated with echinococcosis, as well as the correlation between these levels and disease progression. Methods: Radiological examinations were performed to diagnose Echinococcus granulosus by identifying echinococcal cysts. The study included patients of all ages and both sexes from Al-Sader Medical City, Al-Hakeem General Hospital, Al-Haidarya General Hospital, and Al-Hayat Hospital. The study period was from October 2023 to the end of January 2024. Results: The mean TNF-α level in patients was 163.27 pg/ml, significantly higher than the mean level of 38.58 pg/ml in controls (p-value < 0.001). Conclusion: The prevalence of hydatid disease in Al-Najaf Al-Ashraf was found to be 33%. TNF-α levels are notably higher in patients with Echinococcus granulosus who are under 40 years of age compared to those over 40 years of age.
Read Article