ADSORPTION STUDIES OF ZINC, COPPER, AND LEAD IONS FROM PHARMACEUTICAL WASTEWATER ONTO SILVER-MODIFIED CLAY ADSORBENT
Background: Industrial wastewater contains pollutants that are detrimental to human health in varied proportions. Among the pollutants are heavy metals, including Zn2+, Pb2+, and Cu2+ found in a characterized pharmaceutical wastewater. Several techniques have been proposed for the heavy metal sequester. However, they are with attendant challenges. The adsorption techniques using clay-metal oxide modified adsorbent/composite such as silver-clay adsorbent is considered suitable for an effective sequestering process. Aims: To develop and characterize Ag/clay adsorbent for pharmaceutical wastewater treatment. Methods: The Ag nanoparticles were synthesized using Parkia biglobossa aqueous leaves extract in an optimization study. The raw clay was beneficiated and doped with silver nanoparticles via the wet impregnation method. The silver-clay adsorbent was characterized using FTIR, XRD, SEM, and EDS characterization tools. The developed adsorbent was used for the batch adsorption process of the heavy metal ion removal from the wastewater. Results and Discussion: The phytochemical analysis and FTIR results of the P. biglobosa showed that the leaf contains phenol, tannin, and flavonoids which acts as reducing, capping, and stabilizing agent required for synthesizing the silver nanoparticles. The prepared silver nanoparticles modified clay adsorbent Ag/clay, have evenly distributed stacks of pseudo-hexagonal plates, are rich in silica, possess silver nanoparticles in the frameworks, and contain functional groups suitable for binding heavy metals. The adsorptions of Zn2+, Pb2+, and Cu2+ from pharmaceutical wastewater onto the silver-modified clay were studied as a function of adsorbent dosage and contact time. The percentage removal results obtained showed that the adsorbent had up to 99.96%, 99.5%, and 99.44% removal efficiency for Zn2+, Pb2+, and Cu2+, respectively, which are better compared with previous studies. The adsorption process was feasible, spontaneous, and exothermic, with Langmuir and Pseudo-second-order models as best fits for the process. Conclusions: The adsorption of selected heavy metal ions onto the green synthesized silver-modified clay adsorbent (Ag/clay) was feasible, spontaneous, and exothermic in the order Zn2+>Pb2+>Cu2+ with Langmuir and Pseudo-second-order model best fitted for the process. These show that the synthesized silver oxide nanoparticles supported on local clay can be used as a potentially low-cost adsorbent to remove heavy metal ions from industrial wastewater.
Read ArticleEXTRACTION AND CHARACTERIZATION OF CURCUMIN FROM TURMERIC RHIZOMES GROWN IN MÉRIDA, VENEZUELA
The extraction of naturally occurring compounds is one of the fastest-growing industries because of its benefits against its synthetic analogs. Environmental protection must require the use of natural products instead of chemicals to minimize pollution. Thus, this investigation studies the use of some natural product, as curcumin, as naturally occurring acid‐base indicators. Curcumin can be used as acid-base indicators since it was found that it possesses pH-dependent solubility. Curcumin, the major active component of turmeric, Curcuma longa (Zingiberaceae), is used as a spice in curry and as a coloring agent in yellow mustards, cosmetics, pharmaceuticals, and hair dyes. In this research, the main compound colored rhizome of turmeric (Curcuma longa) cultivated in Mérida, Venezuela, is extracted: Curcumin (C21H20O6) (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, in a yield of 3.42% after 8 hours of extraction using soxhlet extractor system with organic solvents (hexane and ethanol). The thin-layer chromatography and column performed separation and purification using a mobile phase, a mixture of chloroform-hexane 3:2. The dye was characterized by spectroscopic analysis of visible ultraviolet (UV-Vis) and infrared (IR), in addition to his studio in steering sensitivity as an acid-base indicator. This dye is useful as an acid-base indicator in strong acid-strong base volumes and did not require large amounts of it as it has high sensitivity. The results indicate that curcumin as an acid-base indicator allows the development of new standards in different chemistry fields that require this type of analysis.
Read Article