COMPARISON OF THE EFFECT OF SILICON AND SILICON NANO-CHELATE IN REDUCING THE IMPACT OF SALINITY STRESS ON WHEAT SEEDLINGS
Today, salinity stress causes extensive damage to crops, and high soil salinity is one of the limiting factors for crop yields. A practical approach to lessen the negative effect of salinity stress is to use mineral nutrition methods such as spraying plants with silicone. To investigate and compare the effect of silicon and silicon nano-chelate on the wheat plant resistance (Shiroodi cultivar) to salinity stress, a factorial experiment was designed and conducted in a completely randomized design with five replications under hydroponic conditions. Experimental treatments included concentrations of 0 and 2 mmol/L silicon, 0 and 0.424 g/L silicon nano-chelate, 0 and 150 mmol/L sodium chloride, and their interaction. The growth and physiological indices showed that salinity stress decreasing effect on shoot dry weight, root fresh weight, catalase activity, and ascorbate peroxidase. These increases indicate the activation of the plant defense system against salinity stress conditions. The results also showed that silicon nano-chelate treatment under salinity stress reduced dry and fresh weights of roots and shoots. These two compounds additionally influenced the content of catalase activity, ascorbate peroxidase, and superoxide dismutase content in shoots. Simultaneously, the silicon and silicon nano-chelate treatment under salinity stress reduced the dry and fresh weight of roots and shoots, catalase activity, and ascorbate peroxidase. Therefore, the results obtained in this study generally showed that silicon under salinity stress increased plant growth and positively affected the activity of its antioxidant system. But silicon nano-chelate not only did not improve plant performance but also reduced its growth.
Read ArticleD-DIMER A RISK FACTOR ASSOCIATED WITH C-REACTIVE PROTEIN FOR PREDICTING THE SEVERITY OF INFECTION BY COVID-19
Background: COVID-19, caused by SARS-CoV-2, has unresolved mortality risk factors and clinical course, highlighting the need for further research. Aims: The study aimed to asses D-dimer and C-Reactive Protein (CRP) as the risk factors for severity covid-19 and who are less capable of surviving. Methods: A retrospective study conduct of COVID-19 in adult inpatients aged >20 at Al-sadder and Alamal Hospital in Iraq. Demographics, clinical trials, treatments, and viral RNA samples were analyzed. The study involved 100 patients, with 67 discharged and 33 hospitalized died. The majority of the participants 45% were aged < 40, but 55% were aged >40 years. Results: A significant and 57% were male 37(55.2%) Survivor vs. 20 (60.6%) non-survivor, p=0.024), more than 43% were female (30(44.8%) Survivor vs. 13(39.4%) non-survivor, p=0.010. Patients had underlying comorbidities (66%), survivor 37(55%), and non-survivor 29(87%). The most prominent comorbidity in non-survivors more than survivors was diabetic mellitus 85%, asthma 58%, stroke 48%, renal failure 42%, heart strake 33%, and hypertension 18%. The study found significant differences in WBC, lymphocyte count, D-dimer, Ferritin, CRP, and LDH levels in non-survivors compared to survivor patients, with a positive correlation between D- dimer and these parameters. The ROC analysis curve showed CRP with a high AUC of 80.2%, 87.9% sensitivity, and 37.3% specificity, while D-dimer and LDH had AUCs of 0.74.9 and 70%, respectively. Discussion: The study found that older age, higher d-dimer, ferritin, CRP, and LDH are associated with disease severity and higher mortality risk in adult COVID-19 patients. Conclusions: These biomarkers could aid in early detection of disease progression signs and better patient management
Read ArticleTHERMAL AND ECONOMIC ANALYSIS OF LIME PRODUCTION
The ore beneficiation process uses little technology, but mining companies have high economic performance. As an energy source, firewood plays a fundamental role due to its simple storage, low cost, great availability of forests, and lack of processing. Thus, the present work aims to analyze the consumption of firewood as fuel and possible improvements in the process for the production of lime in terms of harnessing raw materials and costs. Calcium oxide is obtained from the thermal decomposition of calcium and magnesium carbonates obtained from dolomitic deposits of limestone (CaCO3 : CaMgCO3). After CaO extraction, it is subjected to a calcination process, removing carbon dioxide (CO2) in ovens that work at temperatures between 900 and 1200°C. The source of energy applied to the calcination furnaces in the analyzed area is wood. The wood has a calorific value between 2,250 and 2,700 Kcal/Kg, but the moisture content responsible for the thermal variation must be considered. The firewood burning process was carried out in a ravine type oven where the temperature at which operators are exposed to heat was evaluated. The results indicated that the cooking time dropped by 20% as the amount of wood is fed into the oven. This increase represents a significant gain in lime production, thus leading to a higher profit for the company.
Read Article